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Overview

Timeline

« Project Start: April 2018
* Project End: April 2019
 100% complete

Budget

« Total project funding
« $250K/ 1 year
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Barriers

Complexity of urban-scale integrated
transportation networks are too large to
model in reasonable compute time. With
traffic assignment approach, routing
accounts for 95% of compute.

Traffic assignment has traditionally
focused only on travel time, not energy
use.

The impact of active route control across
connected vehicles is unknown, yet is a
key part of current urban scale mobility
dynamics.

Partners

« Connected Corridors, UCB
« CalTrans, DOT
e LA Metro
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Relevance

Urban-scale energy modeling of integrated transportation network
behavior and associated impact of new vehicle technologies using
traffic assignment methodologies

- Connected vehicles: How should they share information?

- Use of navigation apps: Best design of routing algorithms for energy and
mobility

- Efficient response to network disturbances: What is the best mechanism for
routing traffic efficiently in events and emergencies?

Use of high performance computing to address the compute load in the
traffic assignment methodologies and model energy use in large
scale networks

- Distribute computational load of routing algorithm across multiple nodes

- Provide an energy cost function to evaluate energy impacts
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Approach: Contrast Travel Time to Fuel Use in TA

Origin _ Path Selection Destination

An assignment h* is an equilibrium
-~ . assignment if it satisfies
‘ : / . / = ’ * *
N (h=H)-F(h") =0,

for all possible assignment 4
S (v,) = ta (1 +0.15 (2—) )
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Approach: Parallelization of TA on HPC

ETAP Approach Overview (using Cori) Mathematical Formulations (Abbrev.)
Qa
. min X, (s)ds
Load network and . Objective: Qh Zaecﬁ f o ¢ M
. Initialize network,
demand files; Demand(ODs)
I . q router, energy # ) st
Allocate computing models. etc. assignment Wardrop conditions 2)
resources ! .

Network constraints (3)

_ .0 Q{I 'ﬂ 4

. . t(Qa)—ta‘ 1+a-|— ()

Frank-Wolfe Solver (loop: iterate until convergence) 5 ‘s
BFiel (va) = A +—+C v (5)
a
Update Graph : Determine/ 0,
weights Update ink cost initialize link flow e B -(a (3 + 1)
i F(Qa):Qa'La' A+ ﬁa 7t (6)
Va
(o (&) +1]
Parallel routing using Contraction Hierarchy N Ca

Rank X, =t(Q,), Time-based user equilibrium (7)

1 Check o g

brallize ~ Aggrogd 0' e ‘ convergence X, = F(Q,), Energy/fuel-based user equilibrium (8)

0-Ds (GASNET) | (GASNE rovtes X, =t(Q,) + d;(%)- Qg Time-based system optimal (9)

Rank Y Q
n dr(Qy) .

X, =F(Q,)+ 10 - Q. Energy/fuel-based system optimal (10)

) . Q,: Flowonlinka; v, Free flow speed of link a;

q Post pmce?s' ¢,.  Capacityoflink a; a 0.15;
Data analytics L,:  Length of linka; B: 4;
td: Freeflow travel time of linka;  X,: Cost function of link a;
A:  Alllinksin the network; A B,C:  Curve fitting coefficients;
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Framework Provided by Sister Project Mobiliti
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Major Flow Variation Across Optimization

Algorithms Los Angeles Connected Corridor Region

User Optimal User Optimal
: Travel Time 7 Fuel Consumption
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LA Network: Distance and Time Impact

Percentage (%)
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Impact of User Fuel Optimization

Distance Travelled Travel Time
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Impact of System Travel Time Optimization
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Impact of System Fuel Optimization

Distance Travelled Travel Time
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Bay Area: System Optimal Travel Time Flow
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Bay Area (Top 500 Flow Links)
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Bay Area Metrics
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Bay Area Network Utilization
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Results for the Bay Area
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Collaboration

UC Berkeley | ITS/PATH

Connected Corridors Program 5 lrans

The Connected Corridors program in Los Angeles currently focuses on

Mobility

traffic management in a corridor. We have been requested to expand
the scope of management from corridors to regions. When trying to
understand overall traffic routing patterns over a region, performing a
traffic assignment computation can be time-consuming, perhaps taking
days. This is unfortunate because route choice behavior takes place at
a large scale and without an understanding of route choice, traffic
management strategies are sub optimal at best. The use of HPC to
support tools that run at scale, in real time, meets a need that has
existed for quite some time. We hope to use these tools in the
next phase of the Connected Corridors program. We wish to thank
the DOE for their foresight in supporting transportation research.

Joe Butler, Program Manager Connected Corridors
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Proposed Future Research

« Dynamic traffic assignment with more detailed models to
capture the temporal and spatial patterns of system dynamics
at both the vehicle level and the transportation system level.
Specifically, 400K micro analysis zones with 10 minute blocks.

« Intelligent parallel algorithms to accelerate the convergence of
the DTA algorithms for metropolitan scale simulations.

 Build and validate models to combine the residual demand and
new demand for high-fidelity micro TA.

* Incorporate the DTA models with sensor data to inform the
intelligent deployment of Connected and Autonomous
Vehicles (CAV) scenarios.

Any proposed future work is subject to change based on funding levels
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Implemented 4 TA optimization cases on HPC: User-equilibrium time-
based (UET), User-equilibrium fuel-based (UEF), System-optimal time-
based (SOT) and System-optimal fuel-based (SOF)

Showed significant savings of time and fuel by the optimization-based
TA solutions compared to un-optimized scenarios; For the Bay Area
case, system-optimal TA (SOT) will reduces the average leg duration by
8.47% compared to the user-equilibrium based approaches (UET). The
average leg fuel consumption of SOF is 3.59% less than the UEF.

Considerably accelerated computation using HPC platform at LBNL
(Cori Supercomputer and GasNet Library) from 5 hours to 30 minutes
for the Bay Area network

Mobiliti Framework allowed for shared network representations for
validation of metrics

Transferrable models for metropolitan scale simulation — will be able to
evaluate full transportation networks of LA
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